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Modified Multilag Methods for 
Volterra Functional Equations 

By P. H. M. Wolkenfelt 

Abstract. Linear multistep methods for ordinary differential equations in conjunction with a 
family of computationally efficient quadrature rules are employed to define a class of 
so-called multilag methods for the solution of Volterra integral and integro-differential 
equations. In addition, modified multilag methods are proposed which have the property that 
the stability behavior is independent of the choice of the quadrature rules. High order 
convergence of the methods is established. In particular, a special class of high order 
convergent methods is presented for the efficient solution of first-kind Volterra equations. 
Numerical experiments are reported. 

1. Introduction. Consider the second-kind Volterra integral equation 

(1.1) f(x) = g(x) + JK(x, y, f(y)) dy, 0 < x < X 

whose kernel K and forcing function g are assumed to be sufficiently smooth. 
In order to discretize (1.1) at x = xn, we need an approximation of the Volterra 

integral operator at x = xn. A conventional approach is to consider a family of 
quadrature rules QLl' with weights wnj which yields the direct quadrature methods 

n 

(1.2) fn = g(Xn) + h 2 wnjK(xn j, x f). 
j=O 

Here, h denotes the step size, xj = jh are equidistant gridpoints, and fj denotes a 
numerical approximation to f(xj). A wide variety of specific methods (1.2) is 
discussed, e.g., in [2]. 

The stability behavior of a numerical method for (1.1) is analyzed by applying 
that method with a fixed positive step size h to the test equation (cf. [3]) 

(1.3) f(x) = 1 + A f(y) dy, A E C. 

Thus applying (1.2) to (1.3) yields the equations 
n 

(1.4) fn = 1 + hA X , Wnjif. 
,J=o 

It is well known that the weights wnj frequently display a certain structure which 
makes it possible to reduce the discrete Volterra equation (1.4) to a finite term 
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recurrence relation. Particular attention has been paid (cf. [16], [20]) to the class of 
(p, a)-reducible quadrature methods which have the property that the equations 
(1.4) reduce to the relations 

k k 

(1.5) 2 ainfi = hX E bifn-i. 
i=O i=O 

In (1.5) ai and bi represent the coefficients of a linear multistep (LM) method for 
ordinary differential equations (see e.g. [14]) which we shall denote by (p, a). Here, p 
and a are polynomials defined as 

k k 

(1.6) p't'- a iDk i' ,7(D): bi Dk-i 
i=O i=O 

The main advantage of constructing methods for (1.1) which reduce to (1.5) lies in 
the fact that the stability behavior, determined by the stability polynomial p(D) - 
hXa(D), can be prescribed by choosing a suitable LM method. For example, the 
backward differentiation methods generate highly stable quadrature rules (cf. [20]). 
A disadvantage of (p, a)-reducible quadrature methods, however, concerns their 
implementation. For instance, in the case of the backward differentiation methods 
just mentioned, either the weights must be generated numerically (cf. [20]) in each 
integration step which results in a rather awkward implementation and extra 
overhead costs, or the methods must be implemented following the imbedding 
approach described in [18] (see also Section 2) at the cost of a rather large number of 
additional arithmetic operations. 

In this paper, we propose two new classes of methods which are more efficient 
than the (p, a)-reducible quadrature methods since they can be constructed and 
implemented in a simple and straightforward fashion. The methods, which we have 
called multilag methods and modified multilag methods, are composed of an LM 
method (p, a) and a family of efficient quadrature rules 6Q. 

It turns out, however, that the stability behavior of the multilag methods is not 
identical to that of the (p, a)-reducible quadrature methods. In fact, stability is 
determined by (p, a) as well as by the quadrature rules* 6l. Adopting the idea of 
"modification" proposed by van der Houwen [11], [12] in connection with mixed 
Runge-Kutta methods for (1.1), we change the multilag methods by adding suitable 
perturbation terms (residuals) to obtain the modified multilag methods the stability 
behavior of which is determined only by (p, a) irrespective of the choice of the 
quadrature rules qLS. As a result the modified multilag methods combine the ad- 
vantages of the multilag methods and the (p, a)-reducible quadrature methods. To 
be specific, the methods are easy to construct, simple to implement and computa- 
tionally efficient. Mioreover, they reduce to (1.5) when applied to (1.3). 

The derivation of the multilag methods for (1.1) is essentially based on an 
appropriate approximation of the Volterra integral operator (see Section 2), and 
therefore it is not surprising that the same approximations can also be employed in 
connection with the numerical solution of other types of Volterra equations. To 

*We intend to report on the stability behavior of the multilag methods for various choices of Q6 in 
future work. 
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demonstrate this, we shall apply our techniques also to derive numerical methods for 
Volterra integro-differential equations 

(1.7) f'(x) = F(X, f(x),l K(X, y, f(y)) dy) f(O) = fos 

and for first-kind Volterra integral equations 
x 

(1.8) JK(x, y, f(y)) dy = g(x), g(O) = 0. 

We shall establish, in Sections 3 and 4, the order of convergence of the multilag 
methods as well as their modification for the solution of (1.1) and (1.7). 

It is well known that for the solution of first-kind equations (1.8) by means of 
direct quadrature methods special stabilized quadrature rules must be constructed 
(see, e.g., [1], [6]). In Section 5, we shall present a class of high order convergent 
modified multilag methods which combine conventional quadrature rules with a 
highly stable LM method. 

To illustrate the theoretical results we have included in Section 6 some numerical 
experiments with modified multilag methods in which we chose for (p, a) the highly 
stable backward differentiation methods and for lS the Gregory quadrature rules. 

2. Preliminaries and Notations. In this section we shall derive approximations of 
the Volterra integral operator JoxK(x, y, f(y)) dy, which occurs in the functional 
equations (1.1), (1.7), and (1.8). For this derivation it is convenient to introduce the 
function 'I(t, x) defined as 

(2>1) 'I(t, x) = ftK(x, y, f(y)) dy, 

where (for the moment) f is a given function. Following Pouzet (see, e.g., [2]), we 
regard T(t, x) as the solution of the differential equation (with parameter x) 

(2.2) a_ T(t, x) = K(x, t, f(t)) 

with initial condition T(O, x) = 0. This observation suggests the use of methods for 
ordinary differential equations; cf. [9], [18]. Using an LM method (p, a) (with 
normalization ao = 1), we may define an approximation An(x) of An(x) 
(4'(x) =T(nh, x)) by the recurrence relation 

k k 

(2.3) i(x) a - i a1i (x) + h 2 biK(x, x^_i, f(x,,_j)), v = k(l)n, 
i=l ~~~i=O 

provided that the starting values Q0(x),... 4k- (x) are given. In the treatment of 
second-kind Volterra equations Wolkenfelt et al. [18] discuss methods employing 
such approximations and indicate the equivalence with (p, a)-reducible quadrature 
methods. A disadvantage of this approach is that, for the computation of An(x), the 
recurrence relation (2.3) must be evaluated for v = k(l)n, which may give a 
considerable amount of overhead, especially when dealing with systems of Volterra 
integral equations. This drawback can be avoided by the following approach: 
instead of defining starting values 0(x), ... Ik - I(x) followed by a recursive evalua- 
tion of (2.3), we compute approximations {n -k(X), .. , n - I(x) by means of computa- 
tionally efficient quadrature rules followed by one single application of (p, a) via (2.3). 
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To be specific, we define 
k k 

(2.4) 4:(X) - z a &n_j(x) + h E biK(X, x,,n-0 Axn_i 
i=l i=O 

where 
n 

(2.5) 4jx) h E wnjK(x, xj, f(x)). 
j=0 

Here, wl n jwn I n > n0, 0 < j < n} denotes a family of quadrature rules. The value 
of no depends on the accuracy of these rules. Obviously, (2.4) can only be applied for 
n > nk = nO + k. 

Remark. Examples of computationally efficient quadrature rules are the rules with 
a finite repetition factor; see, e.g., [3]. In the case of a repetition factor of one, the 
weights satisfy 

[ 0, if O <j < n-K, 
Wni j Wn- K j 7 Wn , if n- K < j < n, 

so that 4n-k+1(X)),... ,n4 (x) defined in (2.5) can be computed recursively as 
follows 

m 

(2.6) {m(X) = 4m_(x) + h E VwmjK(x xj, f{x)), 
j=m1-K 

m=n-k+ l(l)n- 1. 

Specific examples are the Gregory quadrature rules [2]. It is easily verified that for 
the evaluation of An(x) by means of (2.4), (2.5), and (2.6) roughly 2nk multiplica- 
tions and additions are saved in comparison with (2.3). El 

So far we assumed that the function f is known. Now assume that only approxi- 
mationsf1 to f(xj) are available. In this case we replace in (2.4) and (2.5), f(xj) by f, 
An(x) by In(x) and An(x) by In(x) to obtain the approximations 

k k 

(2.7) In(x) :- aIn_(x) + h E biK(x, Xn-, fn-i) n n k, 
i=O 

where 
n 

(2.8) In(x) :=h , wnjK(x, xj, fj), n ,> nO0. 
j=0 

Since the function In(x), which depends on all previously computed fj-values, is 
usually called a lag term (or history term), we shall call the function In(x) a multilag 
approximation to 4'(x). 

For the convergence analysis of our methods we need the local truncation error 
Tn(h; x) of (2.4) at t = nh defined as 

k k 

(2.9) 4n(x) =- aj4n_j(x) + h E biK(x, xn-i, j(xn_)) + Tn(h; x). 
i=l i=O 

Note that for an LM method of order p 

(2.10) Tn(h; x) = C,+,hP+l 
ap 

K(x, t, f(t)) lt=nh+ C(hp+2) ash-- 0, 
Atp 
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where #, 0 denotes the error constant of (p, a); cf. [8]. For the rules (2.5) we 
define the quadrature error 

(2.11) Qn(h; x) 4A(x) - (x). 

Furthermore we assume that the quadrature weights w, j are uniformly bounded, i.e., 

wjI w- for all n andj. 
In our theorems we shall establish a bound on the global discretization error in 

terms of quadrature errors, local truncation errors and errors in the starting values 
using the following notation: 

(2.12) 81(h) = max{If(xj) -fj : 0 j < no -I, 

(2.13) 82(h) = max{If(xj) -1fj no <j < nk -1 

(2.14) TN(h) = max{I Tn(h; xn) I:nk < n < N} 

(2.15) QN(h) = max{| Qn-i(h; xn) I nk < n < N, 1 < i < k}, 

(2.16) L\QN(h) = max{| Qn-i(h; xn) -Qni(h; xn-i) I: nk < n < N, 1 < i < k}. 

In order not to distract the reader's attention from the main results, all theorems 
are stated without proof. However, for those interested, the technical details can be 
found in the Appendix of [21]. 

3. Methods for Second-Kind Volterra Integral Equations. The second-kind Volterra 
equation (1.1) can be written as 

(3.1) f(x) = g(x) + T(x, x), 0 < x < X, 

where we have used the notation (2.1). 
3.1. Multilag Methods. In order to discretize (3.1) at x = xn, we replacef(xn) by f 

and T(xn, xn) = 4n(xn) by In(xn) defined in (2.7) to obtain the multilag method 

k k 

(3.2) fn = g(Xn)- ajn_(xn) + h E biK(Xn, Xn- fn-i), n > nk, 
i=l ~~~i=O 

where In(x) is defined in (2.8). The required starting values arefj, j = O(l)nk -1. 

For the global error f(xn) - fn the following result can be derived. 

THEOREM 3.1. Assume that K satisfies the Lipschitz condition 

(3.3) 1 K(x, y, (l) -K(x, Y, 02) 1 -1LI 1I l- 021 

Let f(x) be the solution of (3.1) and let fn be defined by (3.2). Then for h sufficiently 
small (X = Nh) 

(3.4) max I1(Xn)-fn I< Cmax{h3I(h), h82(h), QN(h), TN(h)}, 
nk?n N 

where C is a constant independent of N and h, and where S1(h), 82(h), QN(h) and 
TN(h) are defined in (2.12) to (2.15). D 
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Using this theorem, high order convergence of the methods (3.2) is now readily 
established. 

THEOREM 3.2. Let the condition (3.3) be satisfied, and assume that g and K are 
sufficiently smooth. In addition, let 

(i) the LM method (p, a) be convergent of order p, 
(ii) the quadrature rules 6tS be of order q, 

(iii) the errors in the starting values be of order s. 
Then the multilag method (3.2) is convergent of order r, where 

r=min{s+ 1,q,p+ 1). 

To be specific 

max If(Xn)nfnI<Chr ash-*0,N-*oo,Nh=X, 
nkSn<N 

where C is a constant independent of N and h. El 

With respect to the stability analysis, we remark that the application of (3.2) to the 
basic test equation (1.3) yields the relations 

k k n 
(3.5) fn 1= - I aiIni + hX bifn-i In= hA X wnjf 

i= I i=o j=o 

which clearly indicates that the stability behavior of (3.2) depends on (p, a) as well 
as on the quadrature rules lS. Under suitable assumptions on the quadrature weights 
(e.g., reducibility [20] or finite repetition factor [3]) the relations (3.5) can be reduced 
to a recurrence relation in terms of fn-values only and the stability behavior is then 
determined by a root condition on the associated stability polynomial. A systematic 
study along these lines for various choices of quadrature rules lS will be the subject 
of future research. 

In this paper we concentrate on a modification of (3.2) which has been con- 
structed in such a way that the stability behavior with respect to (1.3) is independent 
of the choice of the quadrature rules qLl used for the lag terms In(x). 

3.2. Modified Multilag Methods. In [12] a modification of mixed Runge-Kutta 
methods was proposed (see also [11]) with the aim of improving the stability 
behavior. This modified method was derived by modifying the lag term by a suitable 
perturbation term which can be regarded as a residual; see [13]. Motivated by this 
approach, we present the following modification of (3.2) 

k 

(3.6a) fn g(xn)- z ai{n-i(Xn) + rn-i} 
i=l 

k 

+h : biK(Xn, Xn-, fn-), n > nk, 
i=O 

(3.6b) rn =fn -g(Xn) - n(Xn)5 n a,>no 

where In(x) is defined in (2.8). The modified multilag method (3.6) requires the 
starting values f,j = O(l)nk - 1. Note that rn defined in (3.6b) can be regarded as a 
residual. 

We remark that the class (3.6) includes as a special case the methods proposed by 
van der Houwen [1 1] (who chose, in the notation (3.6), a, = -1, a2 = ... = ak = 0). 
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It is easily verified that application of (3.6) to the test equation (1.3) yields, due to 
cancellation of the In terms, the recurrence relation (1.5). Thus the stability behavior 
of (3.6) is determined only by (p, a), and therefore identical to that of the 
(p, a )-reducible quadrature methods. 

Before establishing the high order convergence of the modified methods (3.6) we 
first state the following result. 

THEOREM 3.3. Let K satisfy the Lipschitz condition 

(3.7) K(x, Y, pl )- K(x, Y, ?02) -K(Xn, Y, (?l) + K(Xn, Y, ?A2)1 

LI Ix-n I I (Al - 2 1 

and let the LM method (p, a) be convergent. Furthermore let f(x) be the solution of 
(3.1) and let fn be defined by (3.6). Then, for h sufficiently small, 

(3.8) max If(x) -ffn Cmax{h3l(h), 82(h), h-'LQN(h), h-'TN(h)1, 
nk?n<N 

where C is a constant independent of N and h and where 81(h), 82(h), /\QN(h) and 
TN(h) are defined in (2.12) to (2.16). l 

The Lipschitz condition (3.7) required in the above theorem is satisfied if, for 
example, K, satisfies a Lipschitz condition with respect to f. We then may write the 
left-hand side of (3.7) as 

x 

f{Kx(t y, (kl) - K(t, y, k2)} dt , 
n 

from which the right-hand side of (3.7) is immediate. It can also be shown that 
h-'LAQN(h) has the same order of accuracy as QN(h) provided that K and Kx are 
sufficiently smooth. This fact together with Theorem 3.3 yields 

THEOREM 3.4. Let the assumptions of Theorem 3.3 and 3.2 be valid. Then the 
modified multilag method (3.6) is convergent of order r*, where r* = min{s, q, p}. 
C1 

Comparison of the results of Theorems 3.2 and 3.4 clearly shows the effect of the 
modification on the order of convergence: if s > p + 1 and q > p + 1, the modified 
methods may lose one order of accuracy. This result, although not rigorously proved 
here, has been verified numerically. 

4. Methods for Volterra Integro-Differential Equations. Using (2.1), Eq. (1.7) can 
be written as 

(4.1) f'(x) = F(x, f(x), I(x, x)), 0 < x < X, 

with the initial condition f(O) - f0. Application of an LM method for ordinary 
differential equations to (4.1) in which 'I(xn, xn) is replaced by a numerical 
approximation yields a wide class of numerical methods (cf. [5], [15], [16], [20]). 

4.1 Multilag Methods. We shall employ a linear k*-step method (p*, a*) with 
coefficients a* and b*, and numerical approximations In = In(xn ) as defined in (2.7) 
to obtain the methods 

k k 

(4.2a) E afn-i h , b*F(Xn-i fn- I-i) n ,> n k n o + k, 
i=O i=O 
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k k 

(4.2b) If n ailn-i(Xn) + h , biK(Xn, Xn-i, fn-i)X n ,> n k 
i=l i=O 

(4.2c) f (n)if n 0 < n -,: nk h I= X O 

where In(x) is defined in (2.8). Note that we have assumed, without loss of 
generality, that k* =k. The required starting values for (4.2) are fj,j =O(l)nk - 1. 

A bound for the global discretization error is established in the following theorem. 

THEOREM 4.1. Let K satisfy the condition (3.3), and let F satisfy the Lipschitz 
conditions 

(4.3a) IF(x,k1, z) -F(x,42, z) I<L2141 4-21 

(4.3b) F(x, 0, zl)-F(x, 0, Z2) j< L3 I -Z21 

and assume that the LM method (p*, a*) is convergent. Let f(x) be the solution of (4.1) 
and let fn be defined by (4.2). Then for h sufficiently small 

(4.4) max I f(x) -fn I 
nk?n<N 

< Cmax{h8j(h), 82(h), ha3(h), QN(h), TN(h), h-'T*(h)}, 

where C is a constant independent of N and h and where 31(h), 82(h), QN(h) and 
TN(h) are defined in (2.12) to (2.15). Furthermore 

(4.5) 83(h) = max{I Qn(h; xn) |: nO s n < nk-l1, 

(4.6) TN(h) = max{|I T*(h; xn) I: nk n< N}, 

where T7*(h; xn) denotes the local truncation error at x = xn of the LM method 

(p*, a*) when applied to (4.1). Dl 

An immediate consequence of the above theorem is 

THEOREM 4.2. Let the conditions (3.3) and (4.3) be satisfied, and assume that F and 
K are sufficiently smooth. In addition, let 

(i) the LM method (p*, a*) be convergent of order p*, 
(ii) the LM method (p, a) be convergent of order p, 

(iii) the quadrature rules 5lSf be of order q, 
(iv) the errors in the starting values be of order s. 

Then the multilag method (4.2) is convergent of order r, where r = mints, q, p + 1, p*} 

Concerning the stability behavior, we note that the application of (4.2) to the basic 
test equation (cf. [16]) 

(4.7) f'(x) = (f(x) + q7 f(y) dy, q, EE C, 

yields relations which depend also on the quadrature rules qLl. In order to eliminate 
the effect of these quadrature rules on the stability behavior we construct a 
modification of (4.2). 

4.2. Modified Multilag Methods. Along the same lines as in Subsection 3.2 we 
define the modified multilag methods by 

k k 

(4.8a) E a*fnO i = h E b*F(X n > n 

i=o i~~=O 
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k k 

(4.8b) In - E a{In-i(xn) + rn-i) + h 1, biK(Xn, Xn-i fn-) n - 
nk. 

i=l i=O 

(4.8c) n=InI( )' n nk 

As in (4.2c) we define In In(xn) if nO < n < nk -1, which implies that rn = 0 if 
nO < n < nk - 1. 

Due to this modification, the method (4.8) applied to (4.7) yields the recurrence 
relations 

k k 

a*fn-i = h E bi*(ffni + _J, 
(4.9) i-O i=O 

k k 

ai In-i = h 2 bi fn-i, 
i=O i=O 

Elimination of In yields a recurrence relation in fn-values only whose characteristic 
(or stability) polynomial is given by 

(4.10) p(.)[&*(.) - hta*(D)] - 

which is independent of 6LY. Note that the same stability polynomials were found by 
Matthys [16] who considered (p, a)-reducible quadrature rules. 

We shall now deal with the convergence of (4.8). First we give the following bound 
for the global error. 

THEOREM 4.3. Let K satisfy the condition (3.7), and let F satisfy (4.3), and let the LM 
methods (p*, a*) and (p, a) be convergent. Further, let f(x) be the solution of (4.1), 
and let fn be defined by (4.8). Then, for h sufficiently small 

(4.11) max jf(xn)-fnj 
nk NA 

? Cmax{h31(h), 82(h), 83(h), h'-1QN(h), h-'TN(h), h-'TN(h)1, 

where C is a constant independent of N and h, where 31(h), 82(h), TN(h) and lAQN(h) 
are defined in (2.12) to (2.16), and where 83(h) and TN(h) are defined in (4.5), (4.6). 
E 

As a consequence we have 

THEOREM 4.4. Let the assumptions of Theorem 4.3 and 4.2 be valid. Then the 
modified multilag method (4.8) is convergent of order r*, where r* min{s, q, p, p*}. 
E 

From the results of Theorem 4.2 and 4.4 it is evident that the modified methods 
may lose one order of accuracy; cf. Subsection 3.2. 

5. Modified Multilag Methods for First-Kind Volterra Integral Equations. In 
Sections 3 and 4 we considered general LM methods in conjunction with general 
quadrature rules. It turned out that convergent LM methods together with conver- 
gent quadrature rules generate convergent methods for second-kind Volterra equa- 
tions and integro-differential equations. 

It is well known, however, that for the solution of first-kind equations convergence 
of the quadrature rules does not generally imply convergence of the associated direct 
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quadrature method and additional assumptions are necessary; see, e.g., 

[1], [6], [7], [10], [17], [19]. 
In this section we do not pursue complete generality and present the convergence 

results of a particular class of modified multilag methods. To be specific, we 
consider the methods 

k 

(5. 1 a) - ai {In-i(xn) + rn?-i + hboK(Xn, xn, Xn) =g(xn), n > 
nk 

i=lI 

(5.1b) rn = (Xn) In(Xn), n n n, 

where In(x) is defined in (2.8). The required starting values arefj, j = O(l)nk -1. 

The methods (5.1) can be derived as follows. Using (2.1), the first-kind Volterra 
equation (1.8) can be written as 

(5.2) +(x, x) = g(x), 0 -< x < X. 
Discretization of (5.2) at x = xn, using the approximation (2.7) in which we take 

b2 = ... = bk = 0, and modification by the "residual approach" then yields (5.1). 
Note that we have chosen a particular class of LM methods (i.e., a(D) = bo0k) which 
includes the well-known backward differentiation methods. We emphasize that the 
quadrature rules QLl are still free to choose. 

For the global error the following bound can be derived. 

THEOREM 5.1. In addition to the condition (3.7) assume that 

(5.3) 1 K(x, x, <f1) -K(x, x, 02) 1 )_ L41 +1 - 2 1 (L4 > 0). 

Let the LM method (p, a) with a(D) = bo k be convergent. Furthermore let f(x) be the 
solution of (1.8), and let fn be defined by (5.1). Then for h sufficiently small 

(5.4) max lf(xn)-fnl <Cmax{h8l(h),h82(h),h-'LQN(h),h-'TN(h)}, 

where C is a constant independent of N and h, and where A1(h), 82(h), AvQN(h) and 
TN(h) are defined in (2.12) to (2.16). D 

We remark that the Lipschitz condition (5.3) is implied by the sufficient condi- 
tions for the existence of a unique continuous solution to (1.8) given in [7]. To be 
specific, one of the conditions is that I aK(x, x, f )/af I should be bounded away 
from zero. 

As an immediate consequence of Theorem 5.1 we have 

THEOREM 5.2. Let the assumptions of Theorem 5.1 be valid and let K and g be 
sufficiently smooth. In addition, let 

(i) the LM method (p, o) with a(D) = bo Sk be convergent of order p, 
(ii) the quadrature rules QLS be of order q, 

(iii) the errors in the starting values be of order s. 
Then the method (5.1) is convergent of order r*, where r* = min{s + 1, q, p}. D 

It is easily verified that the methods (5.1) applied to the test equation 
X 

(5.5) Jf(y) dy = g(x) 
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reduce to fn = (hbo)'lk 0ajg(xn-i), irrespective of the choice of the quadrature rules 
JS. As a result, the methods (5.1) correspond to "local differentiation formulae" 
which is a desirable property with respect to stability (see e.g. [17, p. 417]). 

6. Numerical Experiments. In this section we report on numerical experiments 
with modified multilag methods (3.6), (4.8) and (5.1). For the LM method (p, a) and 
the quadrature rules q1 we chose, for p = 2(1)6, the pth order backward differenti- 
ation (BD) methods [14] and the pth order Gregory quadrature rules, respectively. In 
the methods (4.8) we took (p*, a*) identical to (p, a). The methods are denoted by 
BDGp (p -2(1)6). 

The methods were applied to test problems (taken from [5],[6] and [20]) with 
known exact solution. Integration was performed with a constant step size, and the 
necessary starting values were computed from the exact solution. In consequence of 
the Theorems 3.4, 4.4 and 5.2 the methods BDGp are of orderp, asymptotically. 

In the tables of results we have tabulated for different orders and a sequence of 
stepsizes, the number of correct decimal digits cd (defined by -'?log (absolute 
error)) at the endpoint of integration. Moreover we have listed in the convergence 
experiments the computed order p* (defined by {cd(h) - cd(2h)}/10 log 2). 

All calculations have been performed on a CDC CYBER 750 installation using 14 

significant digits. 
6.1. Second-Kind Volterra Integral Equations. In order to test their high order 

convergence, we have applied the BDG methods to the following problem 

(6.1.1) f(x) 1 ?xfexp(-X) + 2 (x-y)2exp(y 
- x)f(y) dy, 0 < x < 6 

with exact solution f(x) - exp(-3x/2){cos(?x4) + Vi sin(?xVi)). In Table 
6.1.1 the results are tabulated for various choices of h. 

TABLE 6.1.1 
Number of correct digits at x = 6 and the computed 

order p* for the BDG methods applied to (6.1.1) 

h-' pp2 p=3 p=:z4 p=S p=6 

4 1.89 1.86 2.34 2.97 3.51 
1.1 2.4 3.0 4.1 4.7 

8 2.22 2.57 3.25 4.21 4.92 
1.6 2.7 3.5 4.6 5.4 

16 2.70 3.37 4.31 5.60 6.55 
1.8 2.9 3.8 4.8 5.8 

32 3.25 4.23 5.44 7.05 8.28 
1.9 2.9 3.9 4.9 6.1 

64 3.83 5.11 6.61 8.53 10.10 

From this table it is obvious that the computed order tends to the theoretical 
order of convergence. 
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The favorable stability behavior of the BDG methods is demonstrated in the 

following example: 

(6.1.2) f(x) = g(x)-A l + xf2(y)dy, x >, 

with exact solution f(x) = [1 + (1 + x)exp(-x)]1/2 if we choose g(x) = f(x) + 

X(1 + x)[ln(1 + x) + 1 - exp(-x)]. We considered the values X = 1, 10, 100, 1000 

and 10000 which makes (6.1.2) increasingly stiff. The endpoint of integration was 

192 h. The results are given in Table 6.1.2. 

TABLE 6.1.2 

The number of correct digits at x = 192h for problem (6.1.2) 

h-' X p = 2 p = 3 p = 4 p = 5 p = 6 

1 3.23 3.83 4.97 5.10 5.84 
10 3.23 3.84 4.98 5.11 5.85 

4 100 3.24 3.84 4.98 5.11 5.85 
1000 3.24 3.84 4.98 5.11 5.85 

10000 3.24 3.84 4.98 5.11 5.85 

1 3.84 4.93 6.19 7.01 8.21 
10 3.87 4.96 6.22 7.04 8.24 

16 100 3.87 4.97 6.23 7.05 8.24 
1000 3.87 4.97 6.23 7.05 8.24 

10000 3.87 4.97 6.23 7.05 8.24 

1 5.18 6.41 8.06 9.29 10.46 
10 4.99 6.42 8.08 9.35 10.65 

64 100 4.99 6.42 8.09 9.37 10.36 
1000 4.99 6.42 8.09 9.43 10.63 

10000 4.99 6.42 8.09 9.40 10.44 

The results show that for fixed h the accuracy is hardly affected by increasing 

stiffness and justify the conclusion that the BDG methods are highly-stable. 
6.2. Volterra Integro-Differential Equations. To test the high order convergence we 

applied the BDG methods to 

f,(X) _ -2 1 2 +2x 
(6.2.1) f'( ) -x -(1 + + ln + 

+0 1+ (1+ x)f(y) ? x 10. 

Taking f(0) =1 yields the exact solution f(x) = (1 + x)-l. The results summarized 
in Table 6.2.1 clearly show that the computed order tends to the theoretical order of 

convergence, except for the sixth order method. 
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TABLE 6.2.1 
Number of correct digits at x = 10 and computed 
order p* for the BDG methods applied to (6.2.1) 

h- | p = 2 p = 3 p = 4 p = 5 p = 6 

4 5.85 5.76 6.32 7.00 7.60 
0.8 1.4 1.8 2.0 2.3 

8 6.10 6.19 6.86 7.59 8.30 
1.0 2.2 2.7 3.2 3.4 

16 6.40 6.84 7.67 8.51 9.33 
1.6 2.6 3.3 3.9 4.4 

32 6.89 7.61 8.65 9.67 10.65 
1.9 2.8 3.6 4.3 7.1 

64 7.45 8.45 9.73 10.97 12.79 

For the stability test we applied the methods to 

f'(x) =[d(x) - af(x) - 3z(x)]3 -1, f(O) 1, 
(6.2.2) z(x) f(X + yy)'f 3(y) dy. 

Choosing d(x) = 1 + a + -y-(I + 6)-1,8x+ f1{(I + -y)3+ - 1 yields the exact solu- 
tion f(x) _ 1. As in [20] we considered the values a 40, f = 15, -y = 2, and 
6 = 3/2, and integration was performed with h = 1/8. On the basis of the stability 
regions of the BDG methods (which are identical to those of the [BD; BD] methods 
given in [20]), we expect the methods to yield stable results. In Table 6.2.2 the results 
are given at some gridpoints. 

TABLE 6.2.2 

Number of correct digits for problem (6.2.2) obtained 
with the BDG methods with h 1/8 

x p=2 p=3 p=4 p=5 p=6 

1.0 3.23 4.37 5.44 6.17 * 

3.0 4.25 6.07 6.72 8.54 7.72 
5.0 4.45 6.93 7.06 8.47 8.25 
7.0 4.60 7.49 7.28 8.68 8.15 

16.0 5.00 8.15 7.79 9.23 9.82 

The asterisk in this table indicates that x = 1 is a point where an exact starting 
value was given. The numerical results clearly display the stable behavior of the 
BDG methods. 

6.3. First-Kind Volterra Integral Equations. We applied the BDG methods to the 
following problems taken from [6] 

(6.3.1) 2 cos(x - y)f(y) dy = exp(x) + sin(x) - cos(x), 
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(6.3.2) fexp(y - x)f(y) dy = sinh(x). 

Both problems have the exact solution f(x) = exp(x). The endpoint of integration 
was x = 4. The correct order of convergence of the BDG methods up to order five is 
shown by the Tables 6.3.1 and 6.3.2. 

TABLE 6.3.1 

Number of correct digits at x = 4 and the computed order p* 

of the BDG methods applied to (6.3.1) 

h-' p = 2 p = 3 p--4 p=5 p = 6 

10 0.87 1.50 2.20 3.20 4.55 
2.3 2.8 3.9 4.9 6.6 

20 1.55 2.33 3.36 4.68 6.54 
2.2 2.9 3.9 5.0 6.5 

40 2.20 3.20 4.54 6.18 8.50 
2.1 3.0 4.0 5.0 3.5 

80 2.83 4.09 5.73 7.68 9.54 

TABLE 6.3.2 

Number of correct digits at x = 4 and computed order p* 
of the BDG methods applied to (6.3.2) 

h-1 p p=2 p =p3 p=4 p=5 p=6 

10 -0.02 0.81 1.64 2.45 1.81 
1.9 2.8 3.8 4.7 1.4 

20 0.54 1.66 2.77 3.87 2.23 
1.9 2.9 3.9 4.8 13.9 

40 1.12 2.54 3.94 5.32 6.40 
2.0 3.0 3.9 4.9 6.8 

80 1.71 3.43 5.12 6.80 8.43 

Although not displayed in the tables of results, the global error turns out to be a 
smooth function except for the sixth order method when h is small (h = 1/40,1/80). 
This may explain the uncertain behavior of BDG6. 

7. Concluding Remarks. The results of Section 6 justify the conclusion that the 
construction presented in this paper yields high order convergent methods which can 
be made highly stable by choosing a highly stable LM method. 

To emphasize, we repeat that the modified multilag methods applied to the basic 
test equations of (1.1), (1.7), and (1.8) yield exactly the same stability polynomials as 
those obtained with (p, u)-reducible quadrature methods. As a consequence, all 
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stability results previously derived for (p, a)-reducible quadrature methods (e.g., 
A-stability results [16], stability regions [4],[5],[20]) also hold for the modified 
multilag methods. 

Finally we remark that the class of methods presented here can easily be extended 
by considering cyclic LM methods for ordinary differential equations. In this case 
the method (3.6) for example takes the form 

k k 

(7.1) In = g(Xn)- 2 a( )IIn-i(Xn) + rn-i} + h E bi )K(Xn, xn-i, fn-i) 
1=1 i=O 

with rn defined as in (3.6b) and where a(n) and Mn) are periodic functions of n. The 
proof of high order convergence of (7.1) will probably be more complicated than for 
the methods presented in this paper. On the other hand, the stability properties of 
cyclic LM methods are well known for ODE-theory and thus can be exploited to 
construct, in a straightforward fashion, highly accurate, highly stable modified 
multilag methods for the efficient solution of Volterra equations. 
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